Jacobians of Noncommutative Motives

نویسنده

  • MATILDE MARCOLLI
چکیده

In this article one extends the classical theory of (intermediate) Jacobians to the “noncommutative world”. Concretely, one constructs a Q-linear additive Jacobian functor N 7→ J(N) from the category of noncommutative Chow motives to the category of abelian varieties up to isogeny, with the following properties: (i) the first de Rham cohomology group of J(N) agrees with the subspace of the odd periodic cyclic homology of N which is generated by algebraic curves; (ii) the abelian variety J(perf(X)) (associated to the derived dg category perf(X) of a smooth projective k-scheme X) identifies with the union of all the intermediate algebraic Jacobians of X.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Artin Motives

In this article we introduce the category of noncommutative Artin motives as well as the category of noncommutative mixed Artin motives. In the pure world, we start by proving that the classical category AM(k)Q of Artin motives (over a base field k) can be characterized as the largest category inside Chow motives which fully-embeds into noncommutative Chow motives. Making use of a refined bridg...

متن کامل

Noncommutative Motives, Numerical Equivalence, and Semi-simplicity

In this article we further the study of the relationship between pure motives and noncommutative motives, initiated in [25]. Making use of Hochschild homology, we introduce the category NNum(k)F of noncommutative numerical motives (over a base ring k and with coefficients in a field F ). We prove that NNum(k)F is abelian semi-simple and that Grothendieck’s category Num(k)Q of numerical motives ...

متن کامل

Noncommutative Numerical Motives, Tannakian Structures, and Motivic Galois Groups

In this article we further the study of noncommutative numerical motives, initiated in [30, 31]. By exploring the change-of-coefficients mechanism, we start by improving some of the main results of [30]. Then, making use of the notion of Schur-finiteness, we prove that the category NNum(k)F of noncommutative numerical motives is (neutral) super-Tannakian. As in the commutative world, NNum(k)F i...

متن کامل

Kontsevich’s Noncommutative Numerical Motives

In this note we prove that Kontsevich’s category NCnum(k)F of noncommutative numerical motives is equivalent to the one constructed by the authors in [14]. As a consequence, we conclude that NCnum(k)F is abelian semi-simple as conjectured by Kontsevich.

متن کامل

Noncommutative geometry and motives (a quoi servent les endomotifs?)

This paper gives a short and historical survey on the theory of pure motives in algebraic geometry and reviews some of the recent developments of this theory in noncommutative geometry. The second part of the paper outlines the new theory of endomotives and some of its relevant applications in number-theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012